Presented to: AeroMed Africa 2012
By: Stephen Barbini, Rotorcraft Directorate, ASW-111
Date: March 15, 2012
Objectives

• After this presentation, the audience will:
 – Understand the certification aspects of Category-A and Category-B
 – Understand the operational aspects of Helicopter Performance Classes (JAR-OPS 3)
 – Understand the risk tradeoffs of operating in Performance Classes
 – Understand the European and United States authorities’ requirements and positions for Performance Class
What is Category-A?

- **Certification Standard**
- **Three requirements (§1.1):**
 - *Design*: multi-engine rotorcraft, with engine and system isolation features;
 - *Procedures*: scheduled takeoff / landing profile; **AND**
 - *Performance*: ensures OEI climb capability.

→ Guaranteed continued safe flight and landing following failure of critical engine at any point along the takeoff or landing path.

- **Category-B rotorcraft have no guaranteed stay-up ability:**
 - Single engine or lack of system separation;
 - Lack of OEI climb performance, etc.
Category A – Graphical Summary

- Redundancy
- Fuel Separation
- Fire Detection
- Design Assessment
- Crash Protection
- Fault Tolerance
- Fire Suppression
- Performance Data
Cat-A Takeoff Profile (clear area)
Cat-A Takeoff Profile (elevated heliport)
Certification versus Operation

• **Aircraft Certification:**
 – Certifies that the rotorcraft complies with the design, performance and procedures requirement of Category-A
 • Performance and procedures are presented in the approved flight manual
 – Does not mandate when Category-A performance and procedures must be utilized

• **Flight Standards:**
 – Grants approvals for operations defined in operating rules or operational specifications
Performance Classes

- JAR-OPS 3 defines numerous helicopter operations (Performance Classes)
- Hostile Environment:
 - A safe forced landing cannot be accomplished due to an inadequate surface
 - The helicopter occupants cannot be adequately protected from the elements
 - SAR capability not available, commensurate with anticipated exposure
 - Unacceptable risk to persons / property on the ground
Performance Classes (continued)

- **PC1**
 - Requires a rotorcraft certified as Category-A
 - Requires surveyed takeoff and landing sites
 - Must be able to continue safe flight or land within designated landing area following an engine failure
 - Does not permit forced landings
Performance Classes (continued)

Performance Class 1

- Redundancy
- Crash Protection
- Separation
- Fault Tolerance
- Fire Detection
- Fire Suppression
- Obstacle Clearance
- Performance Data

Performance Data

[Image: Diagram showing Performance Classes 1, with categories such as Redundancy, Crash Protection, Separation, Fault Tolerance, Fire Detection, Fire Suppression, Obstacle Clearance, and Performance Data.]
Performance Classes (continued)

- **PC2**
 - Requires a rotorcraft certified as Category-A
 - Permits the possibility of a **safe**, forced landing
 - What effect does a Hostile Environment have on PC2?
 - Ends at 200 feet above takeoff surface
 - Defaults to PC1 OEI obstacle clearance above 200 feet

- **PC2 with Exposure**
 - Permits a pre-defined exposure to hostile environments up to 200 feet above the takeoff surface
 - Based on engine reliability
Performance Classes (continued)

• PC3
 – Permits rotorcraft certified as Category-B
 – Does not require safe OEI fly-away capability
 – Requires safe, forced landing after an engine failure
 • Exceptions may be permitted
Which PC is Appropriate?

• The key goal is for all pilots to evaluate helicopter performance, payload, temperature, pressure altitude and winds before every flight and then to fly disciplined take-off and landing profiles that minimize the potential consequences of engine failures.
Tradeoffs

• **PC1**
 - Safest and most stringent
 - Must have a surveyed operations site

• **PC2**
 - May permit a higher takeoff/landing weight than PC1
 - Does not require a surveyed operations site
 - May not be able to avoid a forced landing
Tradeoffs

- **PC2 with Exposure**
 - May permit a higher takeoff/landing weight than PC1
 - Gives consideration to obstacles
 - Exposed for up to 9 seconds

- **PC3**
 - Permits single-engine rotorcraft
 - May permit a higher takeoff/landing weight than PC1 or PC2
 - Stay-up capability not guaranteed after an engine failure
EASA Position

• EASA has transposed JAR-OPS 3 into EASA OPS.
 – No significant differences
FAA Position

• The FAA has not adopted JAR-OPS 3
 – Rotorcraft transport operations fall under the purview of 14 CFR 135
 • Supplemented with Operational Specifications
Questions?